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We study a class of discrete dynamical systems that consists of the following data:
(a) a finite (labeled) graph Y with vertex set �1� � � � � n�, where each vertex has a
binary state, (b) a vertex labeled multi-set of functions �Fi�Y � �n2 → �n2�i, and (c)
a permutation π ∈ Sn. The function Fi�Y updates the binary state of vertex i as a
function of the states of vertex i and its Y -neighbors and leaves the states of all
other vertices fixed. The permutation π represents a Y -vertex ordering according to
which the functions Fi�Y are applied. By composing the functions Fi�Y in the order
given by π we obtain the sequential dynamical system (SDS):

��Y � π	 = Fπ�n�� Y ◦ · · · ◦ Fπ�1�� Y � �n2 −→ �n2 �

In this paper we first establish a sharp, combinatorial upper bound on the number
of non-equivalent SDSs for fixed graph Y and multi-set of functions �Fi�Y �. Second,
we analyze the structure of a certain class of fixed-point-free SDSs.  2001 Elsevier

Science

Key Words: acyclic orientations; sequential dynamical system; orderings; graph
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1. INTRODUCTION AND STATEMENT OF RESULTS

Let Y be a loop-free, labeled, undirected graph with vertex set v�Y 	 =
�1� � � � � n� and edge set e�Y 	. In particular, let Linen be the graph with
edge set ��i� i + 1� � i = 1� � � � � n − 1�, Circn the graph with edge set
��1� n�� ∪ ��i� i + 1� � i = 1� � � � � n − 1�, Wheeln the vertex join of Circn
and 0, and finally Starn the graph with vertex set �1� � � � � n� and edge set
��1� i� � i = 2� � � � n�. We denote the set of Y -vertices adjacent to vertex
i by S1�i�, B1�i� = S1�i� ∪ �i� and set δi = �S1�i��� d�Y � = max1≤i≤n δi. To
emphasize the underlying base graph we will sometimes refer to S1�i�� B1�i�
as S1� Y �i�� B1� Y �i�. The increasing sequence of elements of the sets S1�i�
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and B1�i� is referred to as

S̃1�i� = �j1� � � � � jδi�� B̃1�i� = �j1� � � � � i� � � � � jδi��(1.1)

Each vertex i has associated a state xi ∈ �2, and for each k = 1� � � � � d + 1
we have a symmetric function f�k�� �k2 → �2. In view of (1.1) we introduce
the map

proj�i	� �n2 → �
δi+1
2 � �x1� � � � � xn� �→ �xj1� � � � � xi� � � � � xjδi ��

and denote the permutation group over k letters by Sk. For each i there
exists a (Y -local) map Fi�Y given by

yi�x� = f�δi+1� ◦ proj �i	�x�
Fi�Y �x� = �x1� � � � � xi−1� yi�x�� xi+1� � � � � xn�

and we refer to the multi-set �Fi�Y �i as �Y . Clearly, for each Y < Kn the
multi-set �f�k��1≤k≤n induces a multi-set �Y .

Definition 1. Let ��Y � 	 be the mapping

��Y � 	� Sn → �n2
�n2 � ��Y � π	 =

n∏
i=1

Fπ�i�� Y(1.2)

= Fπ�n�� Y ◦ · · · ◦ Fπ�2�� Y ◦ Fπ�1�� Y �
We call ��Y � π	 the sequential dynamical system (SDS) over Y with respect
to the ordering π.

In the following we will study SDSs that are induced by the multi-sets
�nor�k�� and �nand�k��, where

nor�k��x1� � � � � xk� =
{
1 if �x1� � � � � xk� = �0� � � � � 0�
0 else

(1.3)

nand�k��x1� � � � � xk� =
{
0 if �x1� � � � � xk� = �1� � � � � 1�
1 else.

(1.4)

We will refer to these SDSs as �NorY� π	 and �NandY � π	, respectively.
Sequential dynamical systems have been studied in [1, 3] in the context

of foundations of a theory of computer simulations and in [5] as dynamical
systems.
Let the graph Y and the multi-set �Y be fixed. Obviously, an SDS

��Y � π	 induces the labeled digraph, ���Y � π	, with vertex set �n2 and edge
set ��x� ��Y � π	�x�� � x ∈ �n2�. We will call ���Y � π	 the phase space of
��Y � π	, denote its set of vertices contained in cycles by Per��Y � π	, and
call ���Y � π	-cycles periodic orbits. A periodic orbit of size 1 is called
a fixed-point. One central question in SDS analysis is that of two SDSs
��Y � π	 and ��Y � σ	 being equivalent. Equivalence of SDS is defined with
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respect to a category ��Y��Y 	 whose objects are the digraphs ���Y � π	.
Here, we consider the category �di�Y��Y 	 having all digraph-morphisms
as morphisms and therefore considering two SDSs ��Y � π	 and ��′

Y � π
′	

to be equivalent if and only if ���Y � π	 ∼= ���Y � π ′	 holds. In the follow-
ing we will analyze the set of non-equivalent SDSs for fixed Y and �Y
which we denote by E�Y��Y 	. SDSs with different Boolean functions can
be equivalent, too: let ��Y � π	 be an arbitrary SDS and let inv� �n2 → �n2 ,
inv�xi� = �xi�, and �inv

Y = �inv ◦ Fi�Y ◦ inv�. Then ��Y � π	 and ��inv
Y � π	 are

equivalent SDSs. In particular, �NorY � π	 and �NandY� π	 are equivalent.
To state our first result we introduce some basic terminology. Let G be a

group and let Y be an undirected graph with automorphism group Aut�Y �.
Then G acts on Y if there exists a group homomorphism u� G −→ Aut�Y �.
If G acts on the graph Y , then its action induces (i) the graph G \Y , where
v�G\Y 	=�G�i� � i∈v�Y 	� and e�G\Y 	=�G��i�k�� ��i�k�∈e�Y 	��

and (ii) the surjective graph morphism πG given by

πG� Y −→ G \ Y� i �→ G�i��
In our first result we give a combinatorial upper bound on the number of
non-equivalent SDSs which is sharp for certain classes of SDS. Let Acyc�Y �
denote the set of acyclic orientations of Y and set a�Y � = �Acyc�Y ��.
Theorem 1. Let Y be an arbitrary graph, let π ∈ Sn, and let ��Y � π	 be

an SDS over Y . Then we have

�E�Y��Y 	� ≤
1

�Aut�Y ��
∑

γ∈Aut�Y �
�a��γ� \ Y ��(1.5)

�E�Starn�NorStarn	� =
1

�Aut�Starn��
∑

γ∈Aut�Starn�
�a��γ� \ Starn�� = n�(1.6)

In [2] one can find further analysis on the sharpness of the bound in
(1.5), which can be computed for the graphs Circn and Wheeln:

Proposition 1. Let n > 2, π ∈ Sn, and let φ be the Euler φ-function.
Then the following assertions hold:

�E�Circn��Circn	�(1.7)

≤




1
2n

∑
d�n
φ�d�(2n/d − 2

)+ 2n/2/4 iff n ≡ 0 mod 2

1
2n

∑
d�n
φ�d�(2n/d − 2

)
iff n ≡ 1 mod 2
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�E�Wheeln��Wheeln	�(1.8)

≤




1
2n

∑
d�n
φ�d�(3n/d − 3

)+ 3n/2/2 iff n ≡ 0 mod 2

1
2n

∑
d�n
φ�d�(3n/d − 3

)
iff n ≡ 1 mod 2.

A permutation π = �i1� � � � � in� induces an orientation ��Y �π of Y by
setting for �ik� ir� ∈ e�Y 	 and k < r, o��ik� ir�� = ik, and t��ik� ir�� = ir . By
construction ��Y �π is acyclic and we have a mapping w� Sn → Acyc�Y �,
π �→ ��Y �π . w is surjective and for any π�σ ∈ Sn, �π = �σ implies
��Y � π	 = ��Y � σ	. Accordingly, we obtain that

h� Acyc�Y � −→ ���Y � π	 � π ∈ Sn�� �π �→ ��Y � π	(1.9)

is well defined. Let ��Y � be the set of Y -independence sets. We will next
analyze the structure of SDSs that are induced by a multi-set �f�k��k such
that they are fixed-point-free for any graph Y :

Theorem 2. Let �f�m��m be a family of Boolean, symmetric functions
inducing for an arbitrary graph Y the fixed-point-free SDS ��Y � π	. Then
��Y � π	 is equivalent to �NorY � π	.
Suppose ��Y � π	 is equivalent to �NorY � π	, then we have:

(a) Each periodic point of ��Y � π	 corresponds uniquely to a Y -
independence set; i.e., there exists a bijective mapping ι� Per��Y � π	 −→
��Y �.

(b) Each ���Y � π	-vertex is either periodic or has in-degree 0. Further-
more, (0) has maximal in-degree in ���Y � π	.

(c) Let Y = Linen or Y = Circn. Then ���Y � π	 ∼=λ ���Y � σ	
implies λ��0�i� = �0�i. In particular, the corresponding orbits containing (0)
are isomorphic.

(d) Suppose Aut�Y � is transitive and there exist ρ� σ�π ∈ Sn such that
��ρ�Y �� σ	 = ��Y � π	 holds. Then we have ρ ∈ Aut�Y � and ��Y �ρ−1σ =
��Y �π .

2. SOME GROUP ACTIONS ON SDS

Sn acts on the set of Y -vertices by permutation and thereby induces
the natural group action on the set of all mappings t� �1� � � � � n� −→ �2
given by �ρ · t��i� = t�ρ−1�i��. In particular, we may view t as an n-tuple,
�x1� � � � � xn� and accordingly obtain the Sn-action on �n2 :

· � Sn × �n2 −→ �n2� �ρ� �xj�� �→ ρ · �xj� = �xρ−1�j���(2.1)
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Clearly, we have hg · �xj� = �xg−1h−1�j�� = h · �g · �xj��. The action · � Sn ×
�n2 −→ �n2 induces an Sn-action on mappings %� �n2 −→ �n2 given by

�ρ •%��xj� = ρ · �%�ρ−1 · �xj���(2.2)

Proposition 2. Let Y be an arbitrary graph with vertex set �1� � � � � n�
acted upon by the group G. Then we have the group-action

• � Sn × ���π�Y �� σ	 � π�σ ∈ Sn� → ���π�Y �� σ	 � π�σ ∈ Sn�(2.3)

�ρ� ��π�Y �� σ	� �→ ρ • ��π�Y �� σ	 = ��π�Y �� ρσ	(2.4)

and • induces by restriction the action

• � G× ��Y � Sn	 −→ ��Y � Sn	(2.5)

�g� ��Y � σ	� �→ g • ��Y � σ	 = ��Y � gσ	�(2.6)

Furthermore, G acts naturally on Acyc�Y � via g���i� k�� = ���g−1�i�,
g−1�k��� and h� Acyc�Y � −→ ��Y � Sn	 is a G-map.
Proof. We first show

∀ρ ∈ Sn� i = 1� � � � � n� ρ · Fi�Y �ρ−1 · �xj�� = Fρ�i�� ρ�Y ��xj��(2.7)

To prove (2.7) we first note that, for arbitrary ρ ∈ Sn, we have ρ�B1� Y �i�� =
B1� ρ�Y ��ρ�i��. In view of �ρ−1 · �xj��i = xρ�i� and �ρ · �yj��ρ�i� = yi we derive

ρ · Fi�Y �ρ−1 · �xj��(2.8)

= (
x1� � � � � yρ�i� = f��B1� Y �i�����xρ�k��k∈B1� Y �i��� � � � � xn

)
Fρ�i�� ρ�Y ��xj�(2.9)

= (
x1� � � � � yρ�i� = f��B1� ρ�Y ��ρ�i������xk�k∈B1� ρ�Y ��ρ�i���� � � � � xn

)
�

Now (2.7) follows in view of

�xρ�s� � ρ�s� ∈ B1� ρ�Y ��ρ�i��� = �xρ�s� � s ∈ B1� Y �i����(2.10)

Obviously, (2.4) is implied by composing the corresponding local maps and
it remains to prove (2.6). Since G acts on Y we have, for all ρ ∈ G,
B1� ρ�Y ��i� = B1� Y �i� and since Fi�Y is a symmetric function we have

∀ρ ∈ G� Fi� ρ�Y � = Fi�Y �(2.11)

Assertion (2.6) follows immediately from (2.11) and it remains to show that
h is a G-map. In view of �gπ = g�π and (2.6) we derive

h�g�π� = ��Y � gπ	 = g • ��Y � π	 = g • h��π�
completing the proof of the proposition.
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3. PROOF OF THEOREM 1

Let ��Y � be an acyclic orientation of Y and let P���Y �� be the set of
all directed ��Y �-paths, π. Further let ω�π�, τ�π�, and )�π� be its start-
vertex, end-vertex, and length of the directed ��Y �-path π, respectively.
We consider the mapping

rk� v�Y 	 −→ �� rk�i� = max�)�π� � π ∈ P���Y ���
ω�π� is an �-origin and τ�π� = i��

An acyclic orientation � induces a partial ordering <�, by setting i <� k
if and only if rk�i� < rk�k�. Since v�Y 	 = �1� � � � � n� we can consider an
acyclic orientation � as a mapping �� e�Y 	 −→ �2, where

���i� k�� =
{
1 if either �i >� k and i > k� or �k >� i and k > i�
0 otherwise.

According to Proposition 2 the G-action on Y induces a G-action on
Acyc�Y � given by

g���i� k�� = ���g−1�i�� g−1�k����
We set Acyc�Y �G = �� ∈ Acyc�Y � � ∀g ∈ G� g� = �� and Fix�g� =
Acyc�Y ��g�. Moreover, πG� Y −→ G \ Y induces the mapping

ω′
G� Acyc�G \ Y � −→ Acyc�Y �� � �→ ��(3.1)

where ���i� k�� = ���G�i��G�j���. It is immediately clear that ω′
G�Acyc

�G \ Y �� ⊂ Acyc�Y �G holds. Next we prove that ωG � Acyc�G \ Y � −→
Acyc�Y �G is bijective having the inverse

ψG � Acyc�Y �G −→ Acyc�G \ Y �� � �→ �G�(3.2)

where �G��G�i��G�k��� = ���i� k��.
Proposition 3. Let Y be an undirected graph being acted upon by the

group G. Then ψG is bijective and we have ψG ◦ωG = id and ωG ◦ψG = id.
In particular, Acyc�Y �G �= � if and only if all G-vertex orbits are contained
in Y -independence sets.

Proof. Let � ∈ Acyc�Y �G. By construction we have, for g ∈ G,
���g−1�i�� g−1�k��� = ���i� k��, whence �� e�Y 	 −→ �2 is constant on
G-edge orbits.
To define �G, let �G�i��G�k�� be a G \ Y -edge. We select �j� h� ∈

π−1
G ��G�i��G�k��� and set �G��G�i��G�k��� = ���j� h��. Since ���
g−1�i�� g−1�k��� = ���i� k�� the mapping �G� e�G \ Y 	 −→ �2 is well
defined and for � ∈ Acyc�Y �G the mapping � �→ �G is bijective. It
remains to prove that �G ∈ Acyc�G \ Y �. To prove this let L be a directed
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G \ Y -loop w.r.t. �G over the vertices G�i1�� � � � �G�is� and the edges
G�y1�� � � � �G�ys�. Restricting � to the subgraph Y ′ = π−1

G �L� we obtain
the acyclic orientation �′.

Claim. Each vertex-orbit G�ij�, j = 1� � � � � s, contains only Y ′ vertices
which are not �′-origins.

Suppose G�ij� contains a Y ′ vertex, k, that is an �′-origin. Since L is
an �G-directed loop there exists a G \ Y -vertex G�h� that precedes G�k�
in �G. Since πG is locally surjective there exists a Y -edge of the form
�k′� k� ∈ π−1

G ��G�h��G�k��� and we obtain �′��k′� k�� = ���k′� k�� =
���G�h��G�k��� contradicting the fact that k is an �′-origin. Conse-
quently, there exists no Y ′-vertex in a G�ij�-orbit that is an �′-origin,
proving the claim.
Obviously, the acyclicity of �′ implies that there exists at least one Y ′-

vertex ij that is an �′-origin, which is impossible. Therefore, � ∈ Acyc�Y �G
implies �G ∈ Acyc�G \ Y �, whence ψG� Acyc�Y �G −→ Acyc�G \ Y � is a
well-defined bijection and ψG ◦ωG = id and ωG ◦ ψG = id follow immedi-
ately. It is straightforward to show that Acyc�Y �G �= � holds if and only if
G \ Y contains no loop of size 1. Obviously, the non-existence of a G \ Y -
loop of size 1 is equivalent to the statement that all G-vertex orbits are con-
tained in Y -independence sets, completing the proof of the proposition.

In [4] one can find a generalization of Proposition 3 for locally surjective
graph morphisms.
An immediate consequence of Propositions 2 and 3 reads

Corollary 1. Let Y be an undirected graph with automorphism group
G. Then we have

�E�Y��Y 	� ≤
1

�G�
∑
g∈G

�Fix�g�� = 1
�G�

∑
g∈G
a��g� \ Y ��(3.3)

Proof. Any g ∈ G induces the bijective mapping λg � �n2 → �n2 , λg�xj� =
g · �xj� (see (2.1)), and in view of Proposition 2 we have

g−1 · �xj� ��Y �π	 → ��Y � π	�g−1 · �xj��

λ−1
g

�

λg

�xj� g•��Y �π	→ g • ��Y � π	�xj� = g · ��Y � π	�g−1 · �xj���
Accordingly, λg� ���Y � π	 → ���Y � gπ	 is a digraph-isomorphism. Using
Burnside’s lemma and Proposition 3 we derive

�E�Y��Y 	� ≤
1

�G�
∑
g∈G

�Fix�g�� = 1
�G�

∑
g∈G
a��g� \ Y ��

which proves the corollary.
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The second statement of Theorem 1 consists of the following

Proposition 4.

�E�Starn�NorStarn	� =
1

�Aut�Starn��
∑

γ∈Aut�Starn�
�a��γ� \ Starn�� = n�

The proof can be found in [5].
In fact, the RHS of (3.3) can be calculated efficiently for several classes

of graphs. As an illustration we give a new proof of the formulas for the
graphs Circn and Wheeln [5] which were originally proved by a somewhat
tedious computation.

Proof of Proposition 1. In the following we prove

1
�G�

∑
γ∈G
a��γ� \ Circn�(3.4)

=




1
2n

∑
d�n
φ�d� (2n/d − 2

)+ 2n/2/4 iff n ≡ 0 mod 2

1
2n

∑
d�n
φ�d� (2n/d − 2

)
iff n ≡ 1 mod 2

1
�G�

∑
γ∈G
a��γ� \Wheeln�(3.5)

=




1
2n

∑
d�n
φ�d�(3n/d − 3

)+ 3n/2/2 iff n ≡ 0 mod 2

1
2n

∑
d�n
φ�d�(3n/d − 3

)
iff n ≡ 1 mod 2.

In view of Proposition 3, we have to compute the set Acyc�Circn��γ�
for γ ∈ Aut�Circn�. First we observe that Aut�Circn� = �σ���τ�, where
σ = �2� 3� � � � � n� 1� and τ = ∏ n/2!

i=2 �i� n − i + 2�. Furthermore we have
a�Circn� = 2n − 2 and a�Wheeln� = 3n − 3. Second, let �0 ⊗ Y � be the
vertex-join of Y and 0, then πG has the property

∀Y� d�Y � < �v�Y 	�� G \ �0⊗ Y � ∼= 0⊗ �G \ Y ��(3.6)

Accordingly, the formula for �3�5� follows by taking the vertex-joins of the
graphs �γ� \Circn. Thus it remains to compute �γ� \Circn. Since Aut�Circn�
is a dihedral group we have either γ = σk or γ = τσk. Suppose d�n then
�σn/d� \ Circn ∼= Circn/d and the automorphisms of the form σk contribute∑
d�n φ�d��2n/d − 2�. For n ≡ 1mod 2 we immediately observe that �τσk�

contains at least one loop of size 1 and we are done. In case of n ≡ 0
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mod 2, �τσk� has for k ≡ 1 mod 2 a vertex that corresponds to a �τσk�-
orbit which contains two adjacent vertices, whence Acyc�Y ��τσk� = �. For
k ≡ 0 mod 2 we conclude that �τσk� \ Circn ∼= Linen/2, which has 2n/2

acyclic orientations and (3.4) follows.
In view of (3.6) it remains to take the vertex-joins of the graphs

�γ� \Circn that have no loops of size 1 and the second formula fol-
lows in view of 0 ⊗ Circn/d ∼= Wheeln/d and a�0 ⊗ Linen/2� = 2 · 3n/2,
whence Proposition 1.

4. PROOF OF THEOREM 2

Let us begin by showing

Lemma 1. Let �f�m��m be a family of Boolean symmetric functions that
induces a fixed-point-free SDS ��Y � π	 for arbitrary graphs Y . Then ��Y � π	
and �NorY � π	 are equivalent.
Proof. Claim 1. For any m ∈ � we have either f�m� = nor�m� or f�m� =

nand�m�.

Let us first consider the case m = 2. It is clear that a fixed-point-free sym-
metric function f�2�� �22 → �2 has the properties f�2��0� 0� = 1� f�2��1� 1� =
0. We have either f�2��0� 1� = f�2��1� 0� = 1 in which case f�2� = nand�2�
or f�2��0� 1� = f�2��1� 0� = 0, that is, f�2� = nor�2�. Let now m > 2. Sup-
pose f�m� �= nor�m� and f�m� �= nand�m�; then there exist two m-tuples a =
�a1� � � � � am�� b = �b1� � � � � bm� with ��i � ai = 1�� = ) and ��i � bi = 1�� = )′
such that 0 < )� )′ < m and f�m��a� = 1� f�m��b� = 0. We consider the graph
K2. Accordingly, we have either (i) f�2��0� 1� = 0 or (ii) f�2��0� 1� = 1.
In case (i) we take Y �)�m − 1� to be the graph over )�m − )� vertices

and
(
)
2

)+ )�m− )� edges having K) as a subgraph such that each K)-vertex
has degree m− 1 and 1 otherwise. In view of f�2��0� 1� = 0 and f�m��a� = 1
we obtain a fixed-point by assigning to any Y �)�m− 1�-vertex with degree
m− 1 the state 1 and state 0 otherwise.
In case (ii), we consider Y �m − )′�m − 1� defined as above. We assign

to each Y �m− )′�m− 1�-vertex with degree m− 1 the state 0 and state 1
otherwise and obtain, in view of f�2��0� 1� = f�2��1� 0� = 1 and f�m��b� = 0,
a fixed-point, and the claim follows.

Claim 2. We have either, for all m ∈ �, f�m� = nor�m� or, for all m ∈ �,
f�m� = nand�m� holds.
Suppose there exist )� )′ ∈ � such that f�)� = nor�)� and f�)′� = nand�)′�.

We consider the bipartite graph K)−1� )′−1 having the vertex setA∪B, where
each a ∈ A has degree ) − 1 and each b ∈ B degree )′ − 1. We assign to
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each a ∈ A the state 0 and to each b ∈ B the state 1 and obtain a fixed-
point. This proves Claim 2.
In view of �NorY � π	 = inv ◦ �NandY � π	 ◦ inv and Observation 1

of the Introduction, �NorY � π	 and �NandY � π	 are equivalent, whence
the lemma.

We will proceed by proving assertion (a) of Theorem 2.

Lemma 2. Let Y be a graph, π = �i1� � � � � in�� π∗ = �in� � � � � i1� ∈ Sn,
and

�Y = ��ξj� ∈ �n2 � ∀ j ∈ �n� ξj = 1 ⇒ ∀ i ∈ S1�j�� ξi = 0��
Then we have

�Y = Per�NorY � π	 = �Nor� π	��n2��
Proof. First we observe that Per�NorY � π	 ⊂ �Nor� π	��n2� ⊂ �Y and

it remains to show �Y ⊂ Per�NorY � π	. To prove this, we first note that
�NorY � π	′ = res�Y �NorY � π	� �Y −→ �Y is a well-defined mapping.
We will show that �NorY � π	′ is invertible with inverse �NorY � π∗	′ =
res�Y �NorY � π∗	. To prove invertibility, it suffices, in view of

�NorY � π∗	 ◦ �NorY � π	 =
n∏
j=1

Norin+1−j � Y ◦
n∏
j=1

Norij � Y

�NorY � π	 ◦ �NorY � π∗	 =
n∏
j=1

Norij � Y ◦
n∏
j=1

Norin+1−j � Y

to show

∀ �ξj� ∈ �Y � i ∈ �� Nori� Y ◦Nori� Y ��ξj�� = �ξj��(4.1)

Case (a). Nori� Y ��ξj�� = �ξ1� � � � � 1� � � � � ξn�. Then, by definition of
Nori� Y , all coordinates ξk, k ∈ B1�i�, have the property ξk = 0 and, clearly,

Nori� Y ◦Nori� Y ��ξj�� = Nori� Y ��ξ1� � � � � 1� � � � � ξn�� = �ξj��
Case (b). Nori� Y ��ξj�� = �ξ1� � � � � ξi−1� 0� ξi+1� � � � � ξn�. By definition of

Nori� Y , we have either ξi = 1 or there exists at least one i-neighbor, k, such
that ξk = 1. We conclude from �ξj� ∈ �Y that, in case of ξi = 1, i is the
unique vertex in B1�i� with this property. Therefore we derive

Nori� Y
(�ξ1� � � � � ξi−1� 0� ξi+1� � � � � ξn�

)
=

{ �ξ1� � � � � ξi−1� 1� ξi+1� � � � � ξn� if k = i
�ξ1� � � � � ξi−1� 0� ξi+1� � � � � ξn� otherwise,

whence Nori� Y ◦ Nori� Y ��ξj�� = �ξj� and (4.1) follows. We immedi-
ately obtain from (4.1) that �NorY � π	′ ◦ �NorY � π∗	′ = �NorY � π∗	′ ◦
�NorY � π	′ = id holds, whence �Y ⊂ Per�NorY � π	 and the proof of the
lemma is complete.
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In view of Per��Y � π	 = ��ξj� ∈ �n2 � ∀ j ∈ �n� ξj = 1 ⇒ ∀ i ∈
S1�j�� ξi = 0� we immediately observe that the mapping

ι� Per��Y � π	 −→ 	�Y �� �ξj� �→ �j � ξj = 1��
is a bijection and assertion (a) follows. Obviously, Per�NorY � π	 =
�Nor� π	��n2� implies that each ��Nor� π	-vertex is either contained in
a cycle or has in-degree 0. To complete the proof of assertion (b) it
remains to show that �0� has maximal ��Nor� π	 in-degree.
Lemma 3. For x �= 0 let M�x� = �h � xh = 1� and for S ⊂ M�x� let xS

be the n-tuple with xSj = xj for j �∈ S and xSj = 0 for j ∈ S. Then we have

∀x ∈ �n2� S ⊂M�x�� ��NorY � σ	−1�x�� ≤ ��NorY � σ	−1�xS��(4.2)

and in particular ��NorY � σ	−1�x�� ≤ ��NorY � σ	−1�0�� holds.
Proof. Obviously, (4.2) holds for any x with the property ��NorY � σ	−1

�x�� = 0. Thus we can w.l.o.g. assume that ��NorY � σ	−1�ξ�� > 0 holds. Let
�0� �= �ξj� ∈ �n2 with �ηk� ∈ �NorY � σ	−1�ξj� and ξi = 1. Writing j <σ k
iff σ−1�j� < σ−1�k�, we can w.l.o.g. assume that i is maximal w.r.t. <σ .
Let S>σ1 �h� = �j ∈ S1�h� � j >σ h� and S>σ1 �h� ξ� = �j ∈ S>σ1 �h� � ξh = 1�.
By definition of Nori� Y , ξi = 1 implies, for j ∈ S>σ1 �i�, ηj = 0. We set
� = ��Y �σ and consider the mapping

r
ξ�i
� � �n2 →�n2� r

ξ�i
� �η�k=

{
1 for k= i∨ k∈S>σ1 �i�\(⋃hS>σ1 �h�ξ�)
ηk else.

For �χk� given by χi = 0 and χk = ξk otherwise, rξ� i� induces by restriction
an injective mapping

res�rξ� i� �� �NorY � σ	−1�ξk� −→ �NorY � σ	−1�χk��(4.3)

since, for k ∈ S≥σ1 �i�, ηk = 0 holds. The rest is obvious. In particular we
have

��NorY � σ	−1�ξk�� ≤ ��NorY � σ	−1�χk��
and (4.2) follows by induction on ��ξg � ξg = 1�� successively replacing
the coordinates ξi = 1 by 0. Clearly, (4.2) implies ��NorY � σ	−1�x�� ≤
��NorY � σ	−1�0��.
Finally we prove assertion (c) of Theorem 2. For this purpose we intro-

duce

M�Y�σ� =
{
x � x has maximal ��NorY � σ	 in degree(4.4)

∧ �NorY � σ	−1��NorY � σ	�x�� = �x�
}
�
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Lemma 4. Let �NorY � σ	 be a SDS and let M�Y�σ� be given by (4.4).
Then

(i) for any connected graph Y , �0� ∈M�Y�σ� holds;
(ii) for Y = Linen or Y = Circn we have M�Y�σ� = ��0��;
(iii) there exist graphs with the property �M�Y�σ�� > 1.

Proof. Ad (i): Lemma 3 guarantees that �0� has maximal ��NorY � σ	 in-
degree for arbitrary σ ∈ Sn. Thus it suffices to prove �NorY � σ	−1��NorY � σ	
�0�� = ��0��. Suppose there exists some η �= 0 such that �NorY � σ	�η� =
�NorY � σ	�0�. Since η �= 0 there exists some vertex i with ηi = 1 and
hence �NorY � σ	�0�i = 0. By assumption we have, for any vertex k,
��NorY � σ∗	 ◦ �NorY � σ	�0��k = 0, from which we can conclude that
there exists a vertex j ∈ S

<σ
1 �i� such that �NorY � σ	�0�j = 1. Now

we have the following situation: there exists a vertex j ∈ S<σ1 �i� with
�NorY � σ	�η�j = �NorY � σ	�0�j = 1 and ηi = 1, which is impossible and
thus �NorY � σ	−1��NorY � σ	�0�� = ��0�� and (i) follows.
Suppose �0� �= x = �xr� ∈ M and let i be a vertex such that xi �= 0. We

can w.l.o.g. assume that the vertex i with xi = 1 is minimal w.r.t. <σ . To
show assertions (ii) and (iii) we prove two claims:

Claim 1. For all j ∈ S1�i� we have j <σ i.

We will prove the claim by contradiction. Suppose there exists some j ∈
S1�i� such that j >σ i holds and let x�i� be the n-tuple defined by x�i�r =
0 for i �= r and x�i�i = 1. Lemma 3 guarantees (a) ��NorY � σ	−1�x�i��� =
��NorY � σ	−1�0�� and (b) that the preimages of �0� correspond uniquely to
preimages η′ of x�i� having the property η′

i = 1 (see (4.3)). We now consider
η = �ηr� with ηi = 0 and ηr = 1, otherwise. Since there exists some j >σ i
we have �NorY � σ	�η� = �0�, with ηi �= 1, contradicting Claim 1 in view of
Lemma 3, since ��NorY � σ	−1�x�i��� = ��NorY � σ	−1�0��.
Since Y is connected there exists some j adjacent to i with j <σ i.

Claim 2. ∃k ∈ S1�j�� k <σ j.
Let us assume that, ∀k ∈ S1�j�� j <σ k. Then we define x′ = �x′r�, where

x′r =
{
1 r = j
xr r �= j.(4.5)

Clearly, we have x �= x′ and since xi = 1, xj = 0 holds. By assumption
∀k ∈ S1�j� we have j <σ k, from which we can conclude �NorY � σ	�x′� =
�NorY � σ	�x�, which is impossible, and Claim 2 follows.
Since i is minimal w.r.t. <σ with the property xi = 1 we have xk = 0 and

there exists no s <σ k with the property xs = 1.



802 c. m. reidys

Ad (ii): Let �0� �= x ∈ M . For Y = Linen or Circn we can conclude
from xk = 0 that, for any η ∈ �NorY � σ	−1�x�, ηj = 1 holds. Again,
��NorY � σ	−1�x�� = ��NorY � σ	−1�0�� implies that

res�r��� �NorY � σ	−1�x� −→ �NorY � σ	−1�0�(4.6)

is a bijection having the property res�r���η�j = 0. We now derive a contra-
diction by showing that there exists a preimage η′ = �η′

r� of �0� with the
property η′

j = 0. For this purpose we define η′ by

η′
r =

{ 0 r = j
1 otherwise.

(4.7)

Clearly, we have �NorY � σ	�η′� = �0�, whence (ii).
Ad (iii): Let

Y =

i t

r j

k

��Y � =

i t

r j

k

We consider x = �xk� xr� xj� xt� xi�, where xi = 1, and xh = 0, oth-
erwise and σ ∈ Sn such that ��Y �σ = ��Y �. Then �NorY � σ	�x�t =
�NorY � σ	�x�k = 1 and �NorY � σ	�x�h = 0, otherwise. For any η ∈
�NorY � σ	−1�x� we have ηr = ηt = 1, ηi = 0 and conclude that

res�� �NorY � σ	−1�x� → �NorY � σ	−1�0�� res��ηh� =
{
ηh for h �= i
1 h = i

is a bijection. Now let η ∈ �NorY � σ	−1��NorY � σ	�x��. Clearly we have
ηk = ηt = 0 and, in view of �NorY � σ	�x�k = 1, ηr = ηj = 0. Finally,
�NorY � σ	�x�i = 0 implies ηi = 1; i.e.,

�NorY � σ	−1��NorY � σ	�x�� = x�
proving (iii).

It is clear that assertion (c) of Theorem 2 follows immediately from the
above lemma since a digraph isomorphism preserves in-degrees.
Finally, to prove (d), let us assume that there exist λ� σ�π ∈ Sn such that

�Norλ�Y �� λσ	 = �NorY � π	(4.8)

holds. Clearly, λ �∈ Aut�Y � implies Y �∼= λ�Y � and there exists some
Y -vertex i with the property S1� λ�Y ��i� �= S1� Y �i�. Since Aut�Y � acts
transitively, Y is regular and in particular we have �S1� λ�Y ��i�� = �S1� Y �i��.
Consequently, there exist vertices k ∈ S1� Y �i� \ S1� λ�Y ��i� and k′ ∈
S1� λ�Y ��i� \ S1� Y �i�.
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Claim. We can w.l.o.g. assume that i is an ��Y �π-origin.
By Proposition 2, (4.8) is equivalent to

∀γ ∈ Aut�Y�� �Norγλ�Y �� γλσ	 = �NorY � γπ	�(4.9)

Furthermore for any vertex i with the property S1� λ�Y ��i� �= S1� Y �i� we
have

γ�S1� λ�Y ��i�� = S1� γλ�Y ��γ�i�� �= S1� Y �γ�i�� = γ�S1� Y �i��
and can therefore conclude

∀ i ∈ v�Y 	� S1� λ�Y ��i� �= S1� Y �i� )⇒ ∀γ ∈ Aut�Y �� γ�i��
S1� γλ�Y ��γ�i�� �= S1� Y �γ�i���

To prove the lemma it then suffices to show γλ ∈ Aut�Y �. By assumption,
Aut�Y � acts transitively and we can choose γ ∈ Aut�Y � such that γ�i� is an
��Y �π-origin, proving the claim.
For an index set M we set

�eM�j =
{ 1 if j ∈M
0 otherwise.

If i is an ��λ�Y ��λσ -origin, we obtain the contradiction:

0 = ��NorY � π	�ek��i �= ��Norλ�Y �� λσ	�ek��i = 1�

Thus we may assume that i is not an ��λ�Y ��λσ -origin. We distinguish
the two cases ∃k′ >λσ i and ∃k′ <λσ i. In the first case we derive

1 = ��NorY � π	�ek′ ��i �= ��Norλ�Y �� λσ	�ek′ ��i = 0�

which is impossible. For k′ <λσ i we consider the index set

M = �h � h <λσ k′ ∧ h ∈ S1� λ�Y ��k′� \ S1� Y �i���
Since i is an ��Y �π-origin we have ��NorY � π	�eM��i = 1 and

∀h ∈ S1� Y �i�� ��NorY � π	�eM��h = 0 = ��Norλ�Y �� λσ	�eM��h�
Therefore, ��Norλ�Y �� λσ	�eM��k′ = 1 and since k′ �∈ S1� Y �i�,

1 = ��NorY � π	�eM��i �= ��Norλ�Y �� λσ	�eM��i = 0

holds. We finally prove ��Y �λσ = ��Y �π . In view of (4.8) we have
�Norλ�Y �� λσ	 = �NorY � π	 and since λ ∈ Aut�Y � (2.5) guarantees

�NorY � λσ	 = �NorY � π	�(4.10)

We immediately observe that h� Acyc�Y � −→ ��NorY � π	 � π ∈ Sn�,
�π �→ �NorY � π	 is bijective. Accordingly, (4.10) implies ��Y �λσ = ��Y �π ,
whence (d) and the proof of Theorem 2 is complete.
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